Серия: Ирреальные пространства


Смотреть раздел: картины в наличии, купить картину.

 

Раздел: Современная живопись


... почему в известных областях идеальное по содержанию может простираться далеко за пределы реального, т. е. что существуют и идеальные отношения, не содержащиеся (не «реализующиеся») в реальности. Наиболее известные примеры этого образуют мнимые числа и Неевклидовы пространства. Чего-то соответствующего мнимому числу в физическом пространстве не существует. И о множестве геометрических «пространств» можно, по крайней мере, сказать, что только одно из них по структуре и по законам может соответствовать реальному пространству, т.е. что только одна из этих систем геометрических измерений и законов может быть системой существующего космоса. Ибо космическое пространство с необходимостью «одно». И какая бы геометрия ни была свойственна ему, всегда остаются прочие, которые в этом случае будут и останутся именно ирреальными. Но как идеальные предметы ирреальные пространства совершенно равнозначны тому одному, которое реализовано в космосе. Они, стало быть, таким же способом обладают идеальным бытием, что и оно, но только не реальным; подобно тому как они представляют такую же структурную жесткость для чистого созерцания и мышления. Потому по этим пространствам геометрически даже не видно, какое из них является реальным пространством. Кратко это отношение можно выразить и так: идеальное бытие индифферентно к реальному, а именно к его собственной реализации в мире; реальное же бытие никогда не бывает индифферентным к идеальному, оно всегда уже предполагает некую идеальную структуру, несет ее в себе и насквозь управляется ею.                   " К основоположению онтологии." 1935. (Гартман Н.)